There has been growing demand for increased fuel efficiency, reduced emissions and improved power performance while maintaining reliability and durability of mechanical and structural systems in many different industries. The structural engineering components often experience long loading histories, typically ten million cycles or greater, i.e. high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes. HCF in the range of 106-108 cycles and VHCF in the range of 108-1010 cycles are key design criteria for aerospace, automotive, military, transportation and many other industries. However, fatigue characterization of metal alloys in the HCF and VHCF regimes is hindered by limitations of traditional fatigue testing machines due to time and cost constraints. The development of high power piezoceramic actuators enables efficient and reliable fatigue tests in the HCF and VHCF regimes within a very short time frame on the basis of ultrasonic fatigue testing approaches. A fully instrumented ultrasonic fatigue test machine operating at 20 kHz was designed and built to investigate HCF and VHCF behavior of lightweight metallic alloys. The fatigue testing machine went through several stages of design and development. Finite element modeling was employed to design and optimize three versions of an acoustic stack including an acoustical horn, a single half wavelength booster and a test specimen. Two aluminum alloys, namely extruded 2024-T351 and 7075-T6 alloys were used to machine test specimens in order to generate representative fatigue test data. Fatigue tests in the HCF and VHCF regime were successfully conducted and fatigue data was found in very good agreement with published corresponding data in the literature.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design and Development of an Ultrasonic Fatigue Testing System for Very High Cycle Fatigue


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    WCX SAE World Congress Experience ; 2020



    Publication date :

    2020-04-14




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English





    Fatigue design for components under variable loading in the very high cycle fatigue area

    Issler, S. / Bacher-Hoechst, M. / Haydn, W. | Tema Archive | 2009



    FATIGUE CRACKING MECHANISMS OF TITANIUM ALLOY VT3-1 IN VERY-HIGH-CYCLE-FATIGUE REGIME

    A. A. Shanyavskiy / C. Bathia / A. D. Nikitin et al. | DOAJ | 2016

    Free access

    Ermüdungsverhalten faserverstärkter Kunststoffe im Very High Cycle Fatigue-Bereich

    Adam, Till Julian / Technische Universität Braunschweig | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2016