The number of traffic deaths in Japan was 4,914 in 2009. Since the head was the most common site of injury in traffic accidents (2,302, 47%), traumatic brain injury causes the fatalities in these accidents. The aim of the present study was to quantify micro injuries in the animal brain for gaining insight and understanding of the human brain injury tolerance. Using porcine brain matter, in vitro stress relaxation experiments and in vivo impact experiments were conducted. In both experiments, the distribution of the damage ratio of the transverse to longitudinal length of cells, hereafter, referred to as an aspect ratio, in the brain matter under loading was examined. In the in vitro stress relaxation experiments, specimens were compressed vertically with a compression velocity of 1 mm/s, and the displacement was held for 140 sec when the compression strain reached the target strain. In the experiments, there were five categories of compression strain: 10, 20, 30, 40, and 50 percent. Regarding the aspect ratio of the cell body, it was 1.5 or less in a no-load condition. On the other hand, it was observed to be greater than 1.5 in the results from the experiments if the compression strain was 30% or more. The results from the experiments show that a compression strain between 20% and 30% corresponds to the threshold for the extremely deformed cell at the micro level. In the in vivo impact experiments, pigs in an unconscious state were exposed through craniotomy, and their exposed brains were hit with a ram at a low speed of 3.3 m/s and a high speed of 7.2 m/s, respectively. It was revealed that the number of cells in which the aspect ratio was greater than 1.5 increased if the impact is provided under the high speed. At the same time, the results indicated that cell deformation was dependent on the ram velocity in the brain matter. Thus, the compression strain on the entire brain from the direction of the force applied to the brain may be one criterion for assessment of brain damage.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Nerve Level Traumatic Brain Injury in in Vivo/in Vitro Experiments




    Publication date :

    2010



    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English



    2010-22-0010 Nerve Level Traumatic Brain Injury in in vivolin vitro Experiments

    Matsui, Y. / Nishimoto, T. / John Paul Stapp Association; Society of Automotive Engineers | British Library Conference Proceedings | 2010


    Falls resulting in mild traumatic brain injury and focal traumatic brain injury: a biomechanical analysis

    Post, Andrew / Kendall, Marshall / Cournoyer, Janie et al. | Taylor & Francis Verlag | 2018


    Clinical aspects of traumatic brain injury

    Peterson,P.L. / Wayne State Univ.,US | Automotive engineering | 1994


    A Proposed New Brain Injury Tolerance for Minor Traumatic Brain Injury

    Zhang, L. / Yang, K. H. / King, A. I. et al. | British Library Conference Proceedings | 2001


    Biomechanics of Impact Traumatic Brain Injury

    Bandak, F. A. / Instituto Superior Tecnico; Instituto de Engenharia Mecanica | British Library Conference Proceedings | 1997