In this article, an adaptive state estimation algorithm for precise air-fuel ratio (AFR) control is presented. AFR control is a critical part of internal combustion engine (ICE) control, and tight AFR control delivers lower engine emissions, better engine fuel economy, and better engine transient performance. The proposed control algorithm significantly improves transient AFR control to eliminate and reduce the amplitude of the lean and rich spikes during transients. The new algorithm is first demonstrated in simulation (using Matlab/SimulinkTM and GT-PowerTM) and then verified on a test engine. The engine tests are conducted using the European Transient Cycle (ETC) with HoribaTM double-ended dynamometer. The developed algorithm utilizes a nonlinear physics-based engine model in the observer and advanced control principles with modifications to solve real industrial control issues. This method dramatically reduces on-engine AFR transient calibration efforts, which was one of the objectives of this research. The developed algorithm is applicable for various fuel mixer configurations including pre-turbocharger, pre-throttle, and post-throttle. It also demonstrates robustness to engine to engine inconsistency. The novel algorithm is developed by following model-led design process. WoodwardTM natural gas engines and engine control modules are used for algorithm development and validation.
Model-Based Precise Air-Fuel Ratio Control for Gaseous Fueled Engines
Sae Int. J. Commer. Veh
Sae International Journal of Commercial Vehicles ; 13 , 3 ; 221-231
2020-10-09
11 pages
Conference paper
English
CONTROLS & INSTRUMENTATION - Air-Fuel Ratio Controller for Gaseous-fueled Engines
Online Contents | 2008
Model-Based Control for Air-Fuel Ratio of Natural Gas Fueled SI Engines
SAE Technical Papers | 2014
|Vibration Sensing For Gaseous-Fueled Engines
Online Contents | 2008
PRODUCTS - New Air-Fuel Ratio Control For Gas-Fueled Engines
Online Contents | 2006
New Carburetors For Smaller Stationary Gaseous-Fueled Engines
Online Contents | 1994