Objective of this work is the incorporation of the flame stretch effects in an Eulerian-Lagrangian model for premixed SI combustion in order to describe ignition and flame propagation under highly inhomogeneous flow conditions. To this end, effects of energy transfer from electrical circuit and turbulent flame propagation were fully decoupled. The first ones are taken into account by Lagrangian particles whose main purpose is to generate an initial burned field in the computational domain. Turbulent flame development is instead considered only in the Eulerian gas phase for a better description of the local flow effects. To improve the model predictive capabilities, flame stretch effects were introduced in the turbulent combustion model by using formulations coming from the asymptotic theory and recently verified by means of DNS studies. Experiments carried out at Michigan Tech University in a pressurized, constant-volume vessel were used to validate the proposed approach. In the vessel, a shrouded fan blows fresh mixture directly at the spark-gap generating highly inhomogeneous flow and turbulence conditions close to the ignition zone. Experimental and computed data of gas flow velocity profiles and flame radius were compared under different turbulence, air/fuel ratio and pressure conditions.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Modeling Ignition and Premixed Combustion Including Flame Stretch Effects


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    WCX™ 17: SAE World Congress Experience ; 2017



    Publication date :

    2017-03-28




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Modeling Ignition and Premixed Combustion Including Flame Stretch Effects

    Sforza, Lorenzo / Lucchini, Tommaso / Onorati, Angelo et al. | British Library Conference Proceedings | 2017


    20044253 Effects of Flame Stretch on Turbulent Combustion Properties of Spherically Propagating Premixed Flames

    Tanoue, K. / Shimada, F. / Higashi, S. | British Library Online Contents | 2004


    Correlating Flame Location and Ignition Delay in Partially Premixed Combustion

    Luijten, C.C.M. / Aussems, J.E.E. / Somers, L.M.T. et al. | SAE Technical Papers | 2012


    Correlating Flame Location and Ignition Delay in Partially Premixed Combustion

    Zegers, R.P.C. / Aussems, J.E.E. / Somers, L.M.T. et al. | British Library Conference Proceedings | 2012


    Modeling approaches for premixed charge compression ignition combustion

    Hergart,C.A. / Barths,H. / Siewert,R.M. et al. | Automotive engineering | 2005