As the fuel economy regulations increase in stringency, many manufacturers are implementing start-stop operation to enhance vehicle fuel economy. During start-stop operation, the engine shuts off when the vehicle is stationary for more than a few seconds. When the brake is released by the driver, the engine restarts. Depending on traffic conditions, start-stop operation can result in fuel savings from a few percent to close to 10%. Gasoline direct injection (GDI) engines are also increasingly available on light-duty vehicles. While GDI engines offer fuel economy advantages over port fuel injected (PFI) engines, they also tend to have higher PM emissions, particularly during start-up transients. Thus, there is interest in evaluating the effect of start-stop operation on PM emissions. In this study, a 2.5L GDI vehicle was operated over the FTP75 drive cycle. Runs containing cold starts (FTP-75 cycle Phases 1 & 2) and multiple runs containing hot starts (FTP-75 cycle Phases 3 & 4) were performed each day. Note that the FTP-75 Phases 3 & 4 are identical to Phases 1 & 2 except that the engine is warmed up. Three fuels were evaluated: an 87 AKI gasoline (E0), a 21% splash blend of ethanol and the 87 AKI gasoline (E21), and a 12% splash blend of iso-butanol and the 87 AKI gasoline (iBu12). PM mass, transient particle number concentration and size distribution, and soot mass concentration were evaluated for both start-stop operation and no start-stop operation on each fuel. Three Phase 1 & 2 cycles and as many as 27 Phase 3 & 4 cycles were performed for each fuel-mode combination. Composite FTP mass emissions for E0 and iBu12 showed increased total PM emissions with start-stop operation, but E21 showed no difference. Statistical analysis of the effects of start-stop on PM number and soot emissions showed different trends for different fuels. For example, when E0 is used with start-stop operation, the particle number decreased but the soot mass tended to increase. The results of this study have implications for hybrid vehicle operation as well because the internal combustion engine in hybrid vehicles must stop and re-start during normal operation.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Characterization of GDI PM during Vehicle Start-Stop Operation


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    International Powertrains, Fuels & Lubricants Meeting ; 2019



    Publication date :

    2019-01-15




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Characterization of GDI PM during Vehicle Start-Stop Operation

    Storey, John M. / Moses-DeBusk, Melanie / Huff, Shean et al. | British Library Conference Proceedings | 2019


    Engine stop/start inhibit during vehicle service

    DUDAR AED / GHANNAM MAHMOUD | European Patent Office | 2021

    Free access

    Optimized Start Strategy for Stop/Start Operation of a μ-Hybrid Vehicle

    Beer, J. / Teulings, W. / Society of Automotive Engineers | British Library Conference Proceedings | 2007


    ENGINE STOP/START INHIBIT DURING VEHICLE SERVICE

    DUDAR AED / GHANNAM MAHMOUD | European Patent Office | 2020

    Free access

    LIMITING ACID STRATIFACTION IN EFB'S DURING START-STOP OPERATION

    Brillmyer, G. / Stitcher, M. | TIBKAT | 2020