An experimental study has been conducted to provide insight into heat transfer to the piston of a light-duty single-cylinder research engine under Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion regimes. Two fast-response surface thermocouples embedded in the piston top measured transient temperature. A commercial wireless telemetry system was used to transmit thermocouple signals from the moving piston. A detailed comparison was made between the different combustion regimes at a range of engine speed and load conditions. The closed-cycle integrated and peak heat transfer rates were found to be lower for HCCI and RCCI when compared to CDC. Under HCCI operation, the peak heat transfer rate showed sensitivity to the 50% burn location.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes


    Additional title:

    Sae Int. J. Engines


    Contributors:

    Conference:

    SAE 2014 World Congress & Exhibition ; 2014


    Published in:

    Publication date :

    2014-04-01


    Size :

    12 pages




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English