As boosted, direct injected gasoline engines become more prevalent in the automotive market, the boosting system architecture and efficiency are intimately entwined with the efficiency and performance of the engine. Single-stage as well as two-stage boosting systems, comprising of either two turbochargers or a supercharger in combination with a turbocharger, are potential configurations. When combining an internal combustion engine with boosting hardware, a mechanical, fluid-dynamic and thermodynamic coupling is created and the system as a whole will need to be treated as such. For the initial selection of the boost system, it is important to match all of the engine design features, such as the engine's compression ratio, valve profiles and intake and exhaust components as well as to adjust and optimize all engine controls' calibration parameters.1-D engine cycle simulations in combination with engine experimental testing were utilized to explore optimum engine configurations and calibration settings when using a variety of boosting systems. A total of five different engine and boosting configurations where configured for this project, including two 4-cylinder, 1.6 liter GDI gasoline engines with single stage boosting (turbocharging and supercharging) and three downsized, 3-cylinder, 1.2 liter GDI gasoline engines with two-stage boosting configurations (series-sequential twin-turbo, super-turbo and turbo-super). Design-of-Experiment routines were carried out to optimize both fixed engine hardware specifications, e.g. compression ratio, as well as variable parameters, e.g. intake and exhaust valve phasing, combustion phasing, for a given boost system architecture on the target engine.Fuel economy and performance comparison were conducted between the different engine and boost system architectures for steady-state operating conditions as well as for common vehicle drive cycles. For light load operating conditions and lightly loaded test cycles e.g. NEDC), the downsized engines with two-stage boosting systems, particularly the 3-cylinder engine with super-turbo configuration, offered the greatest fuel economy potentials. For mid and high load operating conditions and more highly loaded test cycles (e.g. US06), the 4-cylinder, supercharged arrangement offered best fuel economy potentials. For steady-state, high load operating conditions, the 4-cylinder, turbocharged arrangement yielded best fuel consumption values.


    Access

    Check access

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Engine Parameter Optimization for Improved Engine and Drive Cycle Efficiency for Boosted, GDI Engines with Different Boosting System Architecture


    Additional title:

    Sae Technical Papers


    Contributors:

    Conference:

    SAE 2014 World Congress & Exhibition ; 2014



    Publication date :

    2014-04-01




    Type of media :

    Conference paper


    Type of material :

    Print


    Language :

    English




    Boosted engine systems optimization approach

    Martin,D. / Beldam,P. / AlliedSignal Automotive Turbocharging Systems,US | Automotive engineering | 1998


    Boosted Engine Systems Optimization Approach

    Martin, David / Beldam, Paul | SAE Technical Papers | 1998



    Eaton TVS V-series supercharger application to compound boosted engines for improved drive cycle fuel economy

    Wetzel,P. / Stewart,N. / Froehlich,M. et al. | Automotive engineering | 2013


    Method and system for boosted engine system

    XIAO BAITAO / TRANTER MATTHEW BLAKE / LESNIAK JUSTIN et al. | European Patent Office | 2019

    Free access