Detection of isomorphism in planar and geared kinematic chains (GKCs) is an interesting area since many years. Enumeration of planar and geared kinematic chains becomes easy only when isomorphism problem is resolved effectively. Many researchers proposed algorithms based on topological characteristics or some coding which need lot of computations and comparisons. In this paper, a novel and simple algorithm is proposed based on graph theory by which elimination of isomorphic chains can be done very easily without any tedious calculations or comparisons. A new concept “Net distance” is proposed based on the graph theory to be a quantitative measure to assess isomorphism in planar kinematic chains (PKCs) as well as GKCs. The proposed algorithm is applied on nine-link two-degrees-of-freedom (DOF) distinct kinematic chains completely and the results are presented. Algorithm is tested on examples from eight-link 1-DOF, ten-link 1-DOF, 12-link 1-DOF, and 15link 4-DOF PKCs. The algorithm is also tested on four-, six-link 1-DOF GKCs to detect isomorphism. All the results are in agreement with the existing literature.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    An Innovative Approach to Detect Isomorphism in Planar and Geared Kinematic Chains Using Graph Theory



    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    50.15 Konstruktionslehre / 52.20 Antriebstechnik, Getriebelehre / 52.15 Maschinenelemente, Maschinenbaugruppen
    Local classification TIB:    770/5315/5330