Increasing lunar exploration activities are giving rise to higher demands for a navigation constellation system in cislunar space. A novel constellation of solar sails around the Sun-Earth Artificial Lagrangian Points (ALPs) is proposed for cislunar navigation in this paper, which benefits from the numberless and out-of-plane advantages of ALPs compared with the classical Lagrangian points. To relieve the technical pressure on sail equipment, a two-layer optimisation strategy including the navigation constellation architecture and trajectory design is developed to reduce the desired lightness number of the sail's motion. The constellation architecture is constructed in the shape of a regular tetrahedron, whose size and orientation are derived from the realisable lightness number at the ALPs. The powerful Hamiltonian structure-preserving controller and differential evolution algorithm are adopted to propagate the bounded quasi-periodic trajectory with minimum lightness number variation. With the premise of the sail's high feasibility in the mechanism, the numerical navigation simulations for a typical trans-lunar weak stability boundary trajectory indicate that the proposed navigation constellation has a low geometric dilution of precision factor and a good navigation performance.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Cislunar Navigation Constellation by Displaced Solar Sails


    Contributors:

    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.86 Schiffsverkehr, Schifffahrt / 53.84 Ortungstechnik, Radartechnik / 42.89 Zoologie: Sonstiges / 55.54 Flugführung / 42.89 / 53.84 / 55.20 / 55.86 / 55.20 Straßenfahrzeugtechnik / 55.44 Schiffsführung / 55.54 / 55.44
    Local classification TIB:    275/5680/7035



    Cislunar Navigation

    Burke, J. D. / Cesarone, R. J. / Hastrup, R. C. et al. | Springer Verlag | 2003


    Cislunar navigation

    Cesarone, R. J. / Burke, J. D. / Hastrup, R. C. et al. | NTRS | 2003


    Cislunar navigation

    Cesarone, R. J. / Burke, J. D. / Hastrup, R. C. et al. | NTRS | 2003


    Cislunar Satellite Constellation Design via Integer Linear Programming

    Patel, Malav / Shimane, Yuri / Lee, Hang Woon et al. | Springer Verlag | 2024


    Payload and Constellation Design for a Solar Exclusion-Avoiding Cislunar SSA Fleet

    Cunio, Phillip | British Library Conference Proceedings | 2020