Sputtering of Zn(O,S) from ZnO/ZnS compound targets has been proven to be a promising buffer layer process for Cd‐free CIGS modules due to easy in‐line integration, low cost and high efficiency on lab scale. In this publication, we report on successful upscaling of the lab process to pilot production. A record aperture efficiency of 13.2% has been reached on a 50 × 120 cm 2 sized module. Neither a non‐doped ZnO layer nor additional annealing steps are required. Moreover, this very reproducible process yields a standard deviation comparable with that of the CdS base line. In contrast to lab experiments, strong performance gain after light soaking has been observed. The light‐soak‐induced power increase depends on the preparation of the window layer. Accelerated aging tests show high stability of module power. This is confirmed by outdoor testing for 20 months. Copyright © 2017 John Wiley & Sons, Ltd. We have successfully replaced the wet‐chemical CdS buffer by Zn(O,S) on CIGS absorbers. The cadmium‐free process is reproducible, and the electrical data of the full‐size solar modules are stable. Moreover, the dry Zn(O,S) buffer causes lower operational expenditure compared with CdS and allows further upscaling.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Sputtered Zn(O,S) buffer layers for CIGS solar modules—from lab to pilot production



    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.36 Energiedirektumwandler, elektrische Energiespeicher



    CdS and Zn1−xSnxOy buffer layers for CIGS solar cells

    Salomé, P.M.P | Online Contents | 2017



    Mass-production technology for CIGS modules

    Matsunaga, Kentaro | Online Contents | 2009



    Mass-production technology for CIGS modules

    Matsunaga, Kentaro | Online Contents | 2009