Computational approaches have great potential for aiding clinical product development by finding promising candidate designs prior to expensive testing and clinical trials. Here, an approach for designing multilevel bone tissue scaffolds that provide structural support during tissue regeneration is developed by considering mechanical and biological perspectives. Three key scaffold design properties are considered: (1) porosity, which influences potential tissue growth volume and nutrient transport, (2) surface area, which influences biodegradable scaffold dissolution rate and initial cell attachment, and (3) elastic modulus, which influences scaffold deformation under load and, therefore, tissue stimulation. Four scaffold topology types are generated by patterning beam or truss-based unit cells continuously or hierarchically and tuning the element diameter, unit cell length, and number of unit cells. Parametric comparisons suggest that structures with truss-based scaffolds have higher surface areas but lower elastic moduli for a given porosity in comparison to beam-based scaffolds. Hierarchical scaffolds possess a large central pore that increases porosity but lowers elastic moduli and surface area. Scaffold samples of all topology types are 3D printed with dimensions suitable for scientific testing. A hierarchical scaffold is fabricated with dimensions and properties relevant for a spinal interbody fusion cage with a maximized surface-volume ratio, which illustrates a potentially high performing design configured for mechanical and biological factors. These findings demonstrate the merit in using multidisciplinary and computational approaches as a foundation of tissue scaffold development for regenerative medicine.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Design of Hierarchical Three-Dimensional Printed Scaffolds Considering Mechanical and Biological Factors for Bone Tissue Engineering



    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    50.15 Konstruktionslehre / 52.15 Maschinenelemente, Maschinenbaugruppen / 52.20 Antriebstechnik, Getriebelehre
    Local classification TIB:    770/5315/5330



    Fabrication of silk fibroin based three dimensional scaffolds for tissue engineering

    Yin, C. / Jatoi, A. W. / Bang, H. et al. | British Library Online Contents | 2016


    Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering

    Tien, L. W. / Gil, E. S. / Park, S. H. et al. | British Library Online Contents | 2012


    Aligned Bioactive Multi-Component Nanofibrous Nanocomposite Scaffolds for Bone Tissue Engineering

    Jose, M. V. / Thomas, V. / Xu, Y. et al. | British Library Online Contents | 2010



    Mechanical and Biological Performances of New Scaffolds Made of Collagen Hydrogels and Fibroin Microfibers for Vascular Tissue Engineering

    de Moraes, M. A. / Paternotte, E. / Mantovani, D. et al. | British Library Online Contents | 2012