conversion efficiency crystalline silicon (Si) solar cells having simple structure without antireflection coating have been fabricated using the surface structure chemical transfer method which produces a nanocrystalline Si layer simply by contacting catalytic platinum with Si wafers in hydrogen peroxide plus hydrofluoric acid solutions. The reflectivity becomes less than 3% after the surface structure chemical transfer method due to formation of black Si. Deposition of phosphosilicate glass and heat treatment at 925 °C performed for formation of pn‐junction effectively passivate the nanocrystalline Si surface. With this phosphosilicate glass passivation plus the hydrogen treatment at 400 °C, the internal quantum efficiency is greatly improved and reaches 81% at a wavelength of 400 nm. Analysis of ellipsometry data shows that incident light with wavelength shorter than 400 nm is almost completely absorbed by the nanocrystalline Si layer. The high internal quantum efficiency for short wavelength light is attributed to effective surface passivation and the nanocrystalline Si layer band‐gap energy which decreases with the distance from the top of the network structure of the nanocrystalline Si layer. Copyright © 2017 John Wiley & Sons, Ltd. 19.5% conversion efficiency crystalline silicon (Si) solar cells having simple structure without antireflection coating have been fabricated using the surface structure chemical transfer method which produces a nanocrystalline Si layer. This high conversion efficiency results from ultralow reflectivity due to the nanocrystalline Si layer and effective surface passivation of the layer using deposition of phosphosilicate glass, followed by heat treatment.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Surface nanocrystalline Si structure and its surface passivation for highly efficient black Si solar cells



    Published in:

    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.36 Energiedirektumwandler, elektrische Energiespeicher