Communication networks are used in load frequency control (LFC) for transmitting remote measurements and control commands, and in demand side response (DSR) for aggregating small-scale controllable loads. This paper investigates modeling and controller design for LFC together DSR in a deregulated environment, considering multiple time delays introduced by the usage of communication channels. Time delay model of the deregulated multi-area LFC with dynamic demand control (DDC) is obtained at first, in which a typical thermostatically controlled appliance, air conditioner, is used for DDC. A robust proportional integral derivative (PID) load frequency controller is designed, through the H ∞ performance analysis and the particle swarm optimization (PSO) searching algorithm, to deal with the load disturbances and multiple delays in the LFC loop and the DDC loop. Case studies based on a three-area deregulated LFC system demonstrate the effectiveness of the proposed load frequency controller and the performance improvement from the DDC. Simulation results show that the DDC can increase the delay margin of the LFC scheme. Moreover, several delay stable regions are revealed via simulation method.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Robust Load Frequency Control with Dynamic Demand Response for Deregulated Power Systems Considering Communication Delays




    Publication date :

    2017




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.33 / 53.33 Elektrische Maschinen und Antriebe






    Secondary frequency control in power systems with arbitrary communication delays

    Koerts, Filip J. / Van der Schaft, Arjan / De Persis, Claudio | BASE | 2021

    Free access