This paper presents a thermal investigation of the Integrated Combustor Vane concept for power generation gas turbines with individual can combustors. This concept has the potential to replace the high-pressure turbine's first vanes by prolonged combustor walls. Experimental measurements are performed on a linear high-speed cascade consisting of two can combustors and two integrated vanes. The modularity of the facility allows for the testing at engine-realistic high turbulence levels, as well as swirl strengths with opposing swirl directions. The heat transfer characteristics of the integrated vanes are compared to conventional nozzle guide vanes. The experimental measurements are supported by detailed numerical simulations using the inhouse CFD code TBLOCK. Experimental as well as numerical results congruently indicate a considerable reduction of the heat transfer coefficient (HTC) on the integrated vanes surfaces and endwalls caused by a differing state of boundary layer thickness. The studies furthermore depict a slight, non-detrimental shift in the heat transfer coefficient distributions and the strength of the integrated vanes secondary flows as a result of engine-realistic combustor swirl.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Thermal Investigation of Integrated Combustor Vane Concept Under Engine-Realistic Conditions


    Contributors:


    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.30 / 52.30 Strömungskraftmaschinen, Turbomaschinen