Design optimization under uncertainty is notoriously difficult when the objective function is expensive to evaluate. State-of-the-art techniques, e.g., stochastic optimization or sampling average approximation, fail to learn exploitable patterns from collected data and require a lot of objective function evaluations. There is a need for techniques that alleviate the high cost of information acquisition and select sequential simulations optimally. In the field of deterministic single-objective unconstrained global optimization, the Bayesian global optimization (BGO) approach has been relatively successful in addressing the information acquisition problem. BGO builds a probabilistic surrogate of the expensive objective function and uses it to define an information acquisition function (IAF) that quantifies the merit of making new objective evaluations. In this work, we reformulate the expected improvement (EI) IAF to filter out parametric and measurement uncertainties. We bypass the curse of dimensionality, since the method does not require learning the response surface as a function of the stochastic parameters, and we employ a fully Bayesian interpretation of Gaussian processes (GPs) by constructing a particle approximation of the posterior of its hyperparameters using adaptive Markov chain Monte Carlo (MCMC) to increase the methods robustness. Also, our approach quantifies the epistemic uncertainty on the location of the optimum and the optimal value as induced by the limited number of objective evaluations used in obtaining it. We verify and validate our approach by solving two synthetic optimization problems under uncertainty and demonstrate it by solving the oil-well placement problem (OWPP) with uncertainties in the permeability field and the oil price time series.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions



    Published in:

    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    50.15 Konstruktionslehre / 52.20 Antriebstechnik, Getriebelehre / 52.15 Maschinenelemente, Maschinenbaugruppen
    Local classification TIB:    770/5315/5330



    Finding Maximum Expected Improvement for High-Dimensional Design Optimization

    Zhang, Yiming / Kristensen, Jesper / Ghosh, Sayan et al. | AIAA | 2019





    A Hybrid Differential Evolution Self-Organizing-Map Algorithm for Optimization of Expensive Black-box Functions

    Subramanian, S. / Delaurentis, D. / American Institute of Aeronautics and Astronautics; International Society for Structural and Multidisciplinary Optimization | British Library Conference Proceedings | 2014