Full coverage shaped-hole film cooling and downstream heat transfer measurements have been acquired in the accelerating flows over a large cylindrical leading edge test surface. The shaped holes had an 8 deg lateral expansion angled at 30 deg to the surface with spanwise and streamwise spacings of 3 diameters. Measurements were conducted at four blowing ratios, two Reynolds numbers, and six well documented turbulence conditions. Film cooling measurements were acquired over a four to one range in blowing ratio at the lower Reynolds number and at the two lower blowing ratios for the higher Reynolds number. The film cooling measurements were acquired at a coolant to free-stream density ratio of approximately 1.04. The flows were subjected to a low turbulence (LT) condition (Tu = 0.7%), two levels of turbulence for a smaller sized grid (Tu = 3.5% and 7.9%), one turbulence level for a larger grid (8.1%), and two levels of turbulence generated using a mock aerocombustor (AC) (Tu = 9.3% and 13.7%). Turbulence level is shown to have a significant influence in mixing away film cooling coverage progressively as the flow develops in the streamwise direction. Effectiveness levels for the AC turbulence condition are reduced to as low as 20% of LT values by the furthest downstream region. The film cooling discharge is located close to the leading edge with very thin and accelerating upstream boundary layers. Film cooling data at the lower Reynolds number show that transitional flows have significantly improved effectiveness levels compared with turbulent flows. Downstream effectiveness levels are very similar to slot film cooling data taken at the same coolant flow rates over the same cylindrical test surface. However, slots perform significantly better in the near discharge region. These data are expected to be very useful in grounding computational predictions of full coverage shaped-hole film cooling with elevated turbulence levels and acceleration. Infrared (IR) measurements were performed for the two lowest turbulence levels to document the spanwise variation in film cooling effectiveness and heat transfer.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Full Coverage Shaped-Hole Film Cooling in an Accelerating Boundary Layer With High Freestream Turbulence


    Contributors:

    Published in:

    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.30 / 52.30 Strömungskraftmaschinen, Turbomaschinen



    Effects of High Freestream Turbulence on Film Cooling Effectiveness of Shaped Holes

    Macias, Richard A. / Polanka, Marc D. / Rutledge, James | AIAA | 2020




    EFFECTS OF HIGH FREESTREAM TURBULENCE ON FILM COOLING EFFECTIVENESS OF SHAPED HOLES

    Macias, Richard A. / Polanka, Marc D. / Rutledge, James | TIBKAT | 2020