It is necessary to understand how film cooling influences the external convective boundary condition involving both the adiabatic wall temperature and the heat transfer coefficient in order to predict the thermal durability of a gas turbine hot gas path component. Most studies in the past have considered only steady flow, but studies of the unsteadiness naturally present in turbine flow have become more prevalent. One source of unsteadiness is wake passage from upstream components which can cause fluctuations in the stagnation location on turbine airfoils. This in turn causes unsteadiness in the behavior of the leading edge coolant jets and thus fluctuations in both the adiabatic effectiveness and heat transfer coefficient. The dynamics of h and η are now quantifiable with modern inverse heat transfer methods and nonintrusive infrared thermography. The present study involved the application of a novel inverse heat transfer methodology to determine time-resolved adiabatic effectiveness and heat transfer coefficient waveforms on a simulated turbine blade leading edge with an oscillating stagnation position. The leading edge geometry was simulated with a circular cylinder with a coolant hole located 21.5 deg downstream from the leading edge stagnation line, angled 20 deg to the surface and 90 deg to the streamwise direction. The coolant plume is shown to shift in response to the stagnation line movement. These oscillations thus influence the film cooling coverage, and the time-averaged benefit of film cooling is influenced by the oscillation.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Film Cooling Parameter Waveforms on a Turbine Blade Leading Edge Model With Oscillating Stagnation Line



    Published in:

    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.30 / 52.30 Strömungskraftmaschinen, Turbomaschinen



    Stagnation Region Gas Film Cooling for Turbine Blade Leading-Edge Applications

    D.W. Luckey / D.K. Winstanley / G.J. Hanus et al. | AIAA | 1977


    Stagnation region gas film cooling for turbine blade leading edge applications

    LUCKEY, D. / WINSTANLEY, D. / HANUS, G. et al. | AIAA | 1976



    Film cooling optimization on leading edge gas turbine blade using differential evolution

    García, Juan C / Dávalos, José O / Urquiza, Gustavo et al. | SAGE Publications | 2019


    Waveforms of Time-Resolved Film-Cooling Parameters on a Leading-Edge Model

    Rutledge, James L. / Polanka, Marc D. | AIAA | 2014