Sand transport and deposition is investigated in a two-pass internal cooling ribbed geometry at near engine conditions. Large-eddy simulation (LES) calculations are performed for bulk Reynolds number of 25,000 to calculate flow field and heat transfer. Constant wall temperature boundary condition is used to investigate the effect of temperature on particle deposition. Three different wall temperatures of 950 °C, 1000 °C, and 1050 °C are considered. Particle sizes in range 5–25 μm are considered. A new deposition model which accounts for particle composition, temperature, impact velocity and angle and material properties of particle and surface is developed and applied. Calculated impingement and deposition patterns are discussed for different exposed surfaces in the two pass geometry. Other than the leading rib faces, the highest particle impingement and deposition is observed in the bend region and first quarter of the second pass. Significant deposition is observed in the two pass geometry for all three wall temperatures considered. Particle impingement and hence deposition is dominated by larger particles except in the downstream half of the bend region. In total, approximately 38%, 59%, and 67% of the injected particles deposit in the two passes, for the three wall temperatures of 950 °C, 1000 °C, and 1050 °C, respectively. While particle impingement is highest for wall temperature of 950 °C, higher deposition is observed for 1000 °C and 1050 °C cases. Deposition increases significantly with wall temperature. For 1000 °C, roughly 12% of the impacting particles deposit. For 1050 °C, approximately 23% of the particles deposit on impact. For all the three cases, the second pass experiences higher deposition compared to the first pass due to higher turbulence and direct impingement.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct


    Contributors:


    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen / 52.52 / 52.30





    Convective Transport in Multiple-Pass Blade Internal Cooling Channels

    Chyu, M. K. / Wang, T. S. | British Library Conference Proceedings | 1993


    COOLING DUCT

    ITO NAOTO / SAKABE MOTOCHIKA | European Patent Office | 2022

    Free access

    COOLING DUCT

    YAMADA KAI | European Patent Office | 2020

    Free access