This paper describes the first of a two-part research effort to find the optimal detector and estimator that minimise the integrity risk in Receiver Autonomous Integrity Monitoring (RAIM). In this first part, a new method is established to determine a piecewise linear approximation of the optimal detection region in parity space. The paper presents examples suggesting that the optimal detection boundary lays in between that obtained using chi-squared residual-based RAIM, and that provided by Solution Separation (SS) RAIM, as one varies the alert limit requirement. In addition, these examples indicate that for realistic navigation requirements, the SS RAIM method approaches the optimal detection region. The SS RAIM detection tests will be employed in the second part of this work, which focuses on the design of non-least-squares estimators to reduce the integrity risk in exchange for a slight increase in nominal positioning error.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Integrity Risk Minimisation in RAIM Part 1: Optimal Detector Design



    Published in:

    Publication date :

    2016




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.86 Schiffsverkehr, Schifffahrt / 53.84 Ortungstechnik, Radartechnik / 42.89 Zoologie: Sonstiges / 55.54 Flugführung / 42.89 / 53.84 / 55.20 / 55.86 / 55.20 Straßenfahrzeugtechnik / 55.44 Schiffsführung / 55.54 / 55.44
    Local classification TIB:    275/5680/7035






    Receiver Autonomous Integrity Monitoring (RAIM) for Multiple Outliers

    Hewitson, S. / Wang, J. / Deutsche Gesellschaft fur Ortung und Navigation et al. | British Library Conference Proceedings | 2005