Phasor measurement units are emerging as a potential tool for on-line power system state estimation. Incorporation of phasor measurement units to the existing power system's monitoring system is impeded by various physical and economic constraints. This article proposes a novel topological genetic algorithm for optimal placement of phasor measurement units along with existing conventional measurement units such that state estimation can be achieved with enhanced accuracy and immunity against power grid contingencies. The proposed algorithm optimally places phasor measurement units so that complete observability of the power system is achieved through them and enhanced redundancy in measurement can be accomplished through conventional measurement units. Since practical phasor measurement unit placements are accomplished in multiple horizons, intelligent sorting and phase optimization methodologies have been presented to attain maximum observability during phasing periods. Placement of phasor measurement units with multiple channel limits has also been studied in this article. The efficacy of the proposed topological genetic algorithm for optimizing the number of phasor measurement units and enhancing state estimation under various operating conditions has been validated through extensive simulation studies conducted in IEEE standard bus systems. Practical case studies have been performed in the western and southern region Indian power grids.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    A Novel Topological Genetic Algorithm-Based Phasor Measurement Unit Placement and Scheduling Methodology for Enhanced State Estimation




    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    53.33 / 53.33 Elektrische Maschinen und Antriebe