A partitioned solution framework is developed for time-domain aerothermoelastic simulation of hypersonic vehicles. The motivation for development of such an approach stems from the fact that hypersonic vehicles consist of multiple substructures, each containing different dominant physics. Different model forms are therefore required to capture the main physics of each substructure, and direct coupling of the various substructures of the vehicle is not straightforward. The methodology of this paper is based on a partitioned time-marching formulation, in which individual components of the vehicle are modeled separately, and forces/motion at the interface are exchanged between the systems within each time step. This approach is advantageous in that it does not require direct coupling of the substructures, therefore allowing for the models to be of dissimilar form. The methodology is applied to a representative configuration consisting of an all-movable hypersonic vehicle lifting surface model containing aerothermoelastic effects attached to a single-degree-of-freedom oscillator representing the fuselage. Results from validation cases are first presented. The partitioned solution methodology is then used to investigate the impact of lifting surface-fuselage inertial coupling on overall vehicle dynamics. Presented as Paper 2011-6378 at the AIAA Atmospheric Flight Mechanics Conference, Portland, OR, 8-11 August 2011


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Partitioned Time-Domain Substructure Coupling Methodology for Efficient Hypersonic Vehicle Simulation



    Published in:

    AIAA journal ; 53 , 11


    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.50 Luftfahrzeugtechnik / 55.60 Raumfahrttechnik / 55.60 / 50.93 / 55.50 / 50.93 Weltraumforschung
    Local classification TIB:    770/7040




    Vehicle substructure

    OTOGURO KAZUMA / TANAKA SHINOBU | European Patent Office | 2021

    Free access

    Vehicle substructure

    NAKAGAWA YUKIO / FUKUI KOICHI | European Patent Office | 2019

    Free access

    VEHICLE SUBSTRUCTURE

    MATSUSHIMA YUKI / SAKURADA CHIHIRO / TAKAHASHI KOICHI | European Patent Office | 2021

    Free access

    VEHICLE SUBSTRUCTURE

    KURANO TAKAFUMI | European Patent Office | 2021

    Free access