Contra-rotating axial compressor/fan (CRAC) is a promising technology to meet the future goals aircraft industry. Massive time accurate simulations are performed to investigate rotating stall in CRAC containing two counter-rotating rotors. Particularly, the hack pressure increasing with a very small step to avoid missing flow field transition from stability to instability. Due to the canceling of the stator, the instability of downstream rotor is more stronger. The present studies mostly focus on the downstream rotor. The tip leakage flow field is analyzed in detail under near stall condition, which indicates that a secondary leakage flow plays an important role in the unsteadiness of CRAC's unsteady flow field. The frequency analysis in the tip clearance of downstream rotor under multiple near stall conditions captured the transition of the second harmonic frequency which can be used as stall inception signal. Moreover, the rotating stall onset process in real CRAC is simulated on the numerical stall. [DOI: 10.1115/1.4029101]


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Unsteady Investigation on Tip Flow Field and Rotating Stall in Counter-Rotating Axial Compressor




    Publication date :

    2014




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.30 / 52.52 / 52.52 Thermische Energieerzeugung, Wärmetechnik / 52.30 Strömungskraftmaschinen, Turbomaschinen