The present research focuses on a novel ceramic/glass composite seal. These seals first underwent a curing cycle. The cycled seal was then characterized with a laser dilatometer to identify the glass transition, softening temperature, and thermal expansion properties. High temperature ring-on-ring (RoR) experiments were performed to study the effect of glass transition and softening temperatures on mechanical response. X-ray diffraction (XRD) techniques in conjunction with post-test micrographs were used to understand the observed mechanical response. In addition, Weibull statistical analysis performed on cycled seals showed that Weibull modulus had decreased and Weibull characteristics strength had increased with multiple thermal cycles.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Thermomechanical Properties of Cycled Ceramic/Glass Composite Seals for Solid Oxide Fuel Cells


    Contributors:


    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English


    Classification :

    BKL:    53.36 Energiedirektumwandler, elektrische Energiespeicher / 53.36