Since a vehicle logo is the clearest indicator of a vehicle manufacturer, most vehicle manufacturer recognition (VMR) methods are based on vehicle logo recognition. Logo recognition can be still a challenge due to difficulties in precisely segmenting the vehicle logo in an image and the requirement for robustness against various imaging situations simultaneously. In this paper, a convolutional neural network (CNN) system has been proposed for VMR that removes the requirement for precise logo detection and segmentation. In addition, an efficient pretraining strategy has been introduced to reduce the high computational cost of kernel training in CNN-based systems to enable improved real-world applications. A data set containing 11 500 logo images belonging to 10 manufacturers, with 10 000 for training and 1500 for testing, is generated and employed to assess the suitability of the proposed system. An average accuracy of 99.07% is obtained, demonstrating the high classification potential and robustness against various poor imaging situations.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Vehicle Logo Recognition System Based on Convolutional Neural Networks With a Pretraining Strategy




    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.84 Straßenverkehr / 55.24 / 55.84 / 55.24 Fahrzeugführung, Fahrtechnik





    Vehicle Logo Recognition

    Li, Yang | DataCite | 2024


    Vehicle logo structure, vehicle logo system and vehicle

    WANG XINGYUN | European Patent Office | 2024

    Free access

    Automated Vehicle Recognition with Deep Convolutional Neural Networks

    Adu-Gyamfi, Yaw Okyere / Asare, Sampson Kwasi / Sharma, Anuj et al. | Transportation Research Record | 2017