Driving behavior can be influenced by many factors that are not feasible to collect in driving behavior studies. The research presented in this paper investigates the characteristics of a wide range of driving behaviors linking driving states to the drivers' actions. The proposed methodology is structured such that a known state can be linked to multiple actions, thus accounting for the effects of unknown driving state factors. A two-step algorithm was developed and used for the segmentation and clustering of driving behaviors. The algorithm segments and clusters car-following behaviors based on eight state-action variables: the longitudinal acceleration, the lateral acceleration, the yaw rate, the vehicle speed, the lane offset, the yaw angle, the range, and the range rate. The results of this methodology are state-action clusters that define the driving pattern of drivers. The sample used in this paper included 20 different drivers, i.e., ten car and ten truck drivers. The results revealed that behavior patterns were different between car drivers but not between truck drivers. The results also show that car drivers exhibit behaviors that are unique to each driver, whereas truck drivers show a common driving pattern. The characteristics and frequency of recognized driving patterns are provided in this paper, along with the corresponding modeling parameters of each pattern.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Segmentation and Clustering of Car-Following Behavior: Recognition of Driving Patterns


    Contributors:


    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    55.84 Straßenverkehr / 55.24 / 55.84 / 55.24 Fahrzeugführung, Fahrtechnik




    Discovery of Driving Patterns by Trajectory Segmentation

    Moosavi, Sobhan / Nandi, Arnab / Ramnath, Rajiv | ArXiv | 2018

    Free access

    Driver driving distraction behavior recognition method based on driving behavior data

    YUAN WEI / ZHANG KANGKANG / CAO LONG et al. | European Patent Office | 2021

    Free access

    Real-time recognition of large-scale driving patterns

    Engstrom, J. / Victor, T. | IEEE | 2001


    Assessing the impacts of driving environment on driving behavior patterns

    Faria, Marta V. / Baptista, Patrícia C. / Farias, Tiago L. et al. | Online Contents | 2018