In gas turbine engines, film cooling holes are often fed by an internal crossflow, with flow normal to the direction of the external flow around the airfoil. Many experimental studies have used a quiescent plenum to feed model film cooling holes and thus do not account for the effects of internal crossflow. In this study, an experimental flat plate facility was constructed to study the effects of internal crossflow on a row of cylindrical compound angle film cooling holes. There are relatively few studies available in literature that focus on the effects of crossflow on film cooling performance, with no studies examining the effects of internal crossflow on film cooling with round, compound angled holes. A crossflow channel allowed for coolant to flow alternately in either direction perpendicular to the mainstream flow. Experimental conditions were scaled to match realistic turbine engine conditions at low speeds. Cylindrical compound angle film cooling holes were operated at blowing ratios ranging from 0.5 to 2.0 and at a density ratio (DR) of 1.5. The results from the crossflow experiments were compared to a baseline plenum-fed configuration. This study showed that significantly greater adiabatic effectiveness was achieved for crossflow counter to the direction of coolant injection.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes



    Published in:

    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    BKL:    52.30 / 52.30 Strömungskraftmaschinen, Turbomaschinen