Preconditions for the effective implementation of a control strategy in an automobile’s active safety system rely on timely and accurate information on the vehicle’s running status, especially the vehicle speed. However, the vehicle speed cannot be measured directly without using advanced onboard sensors or specialized test equipment owing to their high mass production cost. In this study, a model-based method for estimating the vehicle speed in different driving modes is conducted in real time, which makes full use of information on the driving wheel’s torque for a four-wheel-drive hybrid car. First, a simulation platform that integrates the models of the powertrain system, the non-linear seven-degree-of-freedom vehicle dynamics system and the dynamic UniTire model is established. Next, an unscented Kalman filter algorithm is adopted to estimate the vehicle speed, and the estimated results and the simulated results are compared under different driving modes. Finally, real-vehicle tests at medium and low speeds are performed using a prototype car. The simulations and the test results confirm that the proposed unscented Kalman filter estimation algorithm without a linearizing truncation process can estimate the vehicle speed with high precision and strong adaptability.


    Access

    Access via TIB

    Check availability in my library

    Order at Subito €


    Export, share and cite



    Title :

    Estimation of the vehicle speed in the driving mode for a hybrid electric car based on an unscented Kalman filter




    Publication date :

    2015




    Type of media :

    Article (Journal)


    Type of material :

    Print


    Language :

    English



    Classification :

    RVK:    ZO 4200: / ZO 4200
    BKL:    55.20 / 55.20 Straßenfahrzeugtechnik
    Local classification TIB:    275/7025






    Unscented Kalman filter for vehicle state estimation

    Antonov, S. | Online Contents | 2011


    Unscented Kalman filter for vehicle state estimation

    Antonov,S. / Fehn,A. / Kugi,A. et al. | Automotive engineering | 2011