Unburned and partially combusted liquid propellant present in bipropellant thruster plumes can contaminate and damage external spacecraft materials. Microscopic impact features due to high-speed droplet impacts have been observed on space shuttle flight experiments and International Space Station (ISS) returned flight hardware. Analytical results have shown that particle impingement angle greatly affects surface damage, with normal impacts being the most severe and highly oblique impacts being more benign. The effect of thruster plume impingement angle on material degradation has now been further studied following a bipropellant thruster plume test performed at the high-vacuum plume test facility for chemical thrusters at DLR Göttingen, STG-CT. Several spacecraft material samples were exposed to the freely expanding pulsed thruster plume at a range of impingement angles (from 0 to 75 deg). Results of post-test evaluations and potential spaceflight applications are summarized.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    The Effect of Impingement Angle on Bipropellant Thruster Plume Degradation of Spacecraft Materials


    Contributors:

    Conference:

    16th International Symposium on Materials in the Space Environment (ISMSE) ; 2024 ; Saint-Raphaël, FR


    Publication date :

    2024-10-07


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English




    Astrium Approach for Plume Flow and Impingement of 10 N Bipropellant Thruster

    Theroude, C. / Scremin, G. / Wartelski, M. et al. | British Library Conference Proceedings | 2011



    Experimental Validation of a Simple Bipropellant Thruster Plume Model

    Woronowicz, M. S. / AIAA | British Library Conference Proceedings | 2000