This paper compares the effects of peripheral visual cues on manual control between a conventional fixed-base simulator and virtual reality. The results were also compared with those from a previous experiment conducted in a motion-base simulator. Fifteen participants controlled a system with second-order dynamics in a disturbance-rejection task. Tracking performance, control activity, simulator sickness questionnaire answers, and biometrics were collected. Manual control behavior was modeled for the first time in a virtual reality environment. Virtual reality did not degrade participants’ manual control performance or alter their control behavior. However, peripheral cues were significantly more effective in virtual reality. Control activity decreased for all conditions with peripheral cues. The trends introduced by the peripheral visual cues from the previous experiment were replicated. Finally, VR was not more nauseogenic than the conventional simulator. These results suggest that virtual reality might be a good alternative to conventional fixed-base simulators for training manual control skills.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Comparing Virtual Reality to Conventional Simulator Visuals: Effects of Peripheral Visual Cues in Roll-Axis Tracking Tasks


    Contributors:

    Conference:

    SciTech 2020 ; 2020 ; Orlando, FL, United States


    Publication date :

    2020-01-06


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English