The Amplification Factor Transport (AFT) transition model proposed by Coder and Maughmer is implemented in the unstructured and curvilinear Reynolds-Averaged Navier-Stokes (RANS) solvers of the Launch Ascent and Vehicle Aerodynamics (LAVA) platform. It is coupled to the Spalart-Allmaras (SA) turbulence model through a modified intermittency variable. As part of the model verification and validation phase, laminar-turbulent transition is studied over 2D flat plates, wind turbine and general aviation airfoils, as well as a 3D inclined prolate spheroid and the JAXA Standard Model (JSM). This work will analyze the sensitivity of the results to grid refinement, grid paradigm, flow conditions and numerical schemes. The numerical efficiency of the unstructured and curvilinear solvers will be compared and convergence acceleration techniques will be explored to address a broad range of aerodynamics applications.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Study of Laminar-Turbulent Transition Modeled by Amplification Factor Transport Within the LAVA Solver


    Contributors:

    Conference:

    2018 AIAA Aviation Forum ; 2018 ; Atlanta, GA, United States


    Publication date :

    2018-06-25


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English


    Keywords :