Mars science satellites often perform orbit changes to obtain different measurements, ground tracks or relay operations. Large reductions in semi-major axis and eccentricity can be done efficiently using the atmospheric drag, a.k.a aerobrake. Aerobraking is one of the most challenging planetary orbit maneuvers in terms of planning and operations. The most important consideration for aerobraking is maintaining the spacecraft's periapsis within an allocated atmospheric density corridor, which is accomplished by raising or lowering periapsis through one or a series of very small and short maneuvers. These maneuvers must be performed as efficiently as possible due to propellant constraints. Work herein details a fast and accurate method to calculate the required impulsive velocity changes in the orbit to guarantee that the spacecraft remains in a prescribed density corridor. The method makes use of the orbit's state transition matrix to map the solution space around the reference orbit. It evaluates the most efficient maneuver epochs to target a given periapsis change with a linear optimal control for single or multiple maneuvers. A fast calculation of the maneuver allows for a more comprehensive evaluation of the trade space, and the selected maneuver may be re-targeted later with a higher- fidelity model. Comparisons against fully propagated models and direct method optimizations demonstrate the new method's performance.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Mars Optimal Aerobrake Maneuver Estimation


    Contributors:

    Conference:

    International Astronautical Congress ; 2018 ; Bremen, Germany


    Publication date :

    2018-10-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English




    Mars Optimal Aerobrake Maneuver Estimation

    Sarli, Bruno / Farres, Ariadna / Folta, David | NTRS | 2018


    Mars aerobrake assembly simulation

    FILATOVS, G. / LEE, GORDON / GARVEY, JOHN | AIAA | 1992


    Mars aerobrake assembly demonstration

    Garvey, John M. | NTRS | 1991


    Mars Aerobrake Assembly Demonstration

    J. M. Garvey | NTIS | 1991


    Mars aerobrake assembly demonstration

    GARVEY, JOHN / LEE, GORDON / FILATOVS, JURI | AIAA | 1990