This study investigated a mission architecture that allows the systematic and affordable in-situ exploration of small solar system bodies, such as asteroids, comets, and Martian moons (Figure 1). The architecture relies on the novel concept of spacecraft/rover hybrids,which are surface mobility platforms capable of achieving large surface coverage (by attitude controlled hops, akin to spacecraft flight), fine mobility (by tumbling), and coarse instrument pointing (by changing orientation relative to the ground) in the low-gravity environments(micro-g to milli-g) of small bodies. The actuation of the hybrids relies on spinning three internal flywheels. Using a combination of torques, the three flywheel motors can produce a reaction torque in any orientation without additional moving parts. This mobility concept allows all subsystems to be packaged in one sealed enclosure and enables the platforms to be minimalistic. The hybrids would be deployed from a mother spacecraft, which would act as a communication relay to Earth and would aid the in-situ assets with tasks such as localization and navigation (Figure 1). The hybrids are expected to be more capable and affordable than wheeled or legged rovers, due to their multiple modes of mobility (both hopping and tumbling), and have simpler environmental sealing and thermal management (since all components are sealed in one enclosure, assuming non-deployable science instruments). In summary, this NIAC Phase II study has significantly increased the TRL (Technology Readiness Level) of the mobility and autonomy subsystems of spacecraft/rover hybrids, and characterized system engineering aspects in the context of a reference mission to Phobos. Future studies should focus on improving the robustness of the autonomy module and further refine system engineering aspects, in view of opportunities for technology infusion.
Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies
2017-12-15
Miscellaneous
No indication
English