A multidisciplinary design optimization procedure has been developed and applied to rotorcraft simulations involving tightly-coupled, high-fidelity computational fluid dynamics and comprehensive analysis. A discretely-consistent, adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows on unstructured, dynamic, overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system for high-fidelity rotorcraft analysis is verified; simulation results exhibit good agreement with established solutions. A constrained gradient-based design optimization for a HART-II rotorcraft configuration is demonstrated. The computational cost for individual components of the multidisciplinary sensitivity analysis is assessed and improved.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    High-Fidelity Multidisciplinary Design Optimization Methodology with Application to Rotor Blades


    Contributors:

    Conference:

    Aeromechanics Design for Transformative Vertical Flight ; 2018 ; San Francisco, CA, United States


    Publication date :

    2018-01-16


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English





    High Fidelity Multidisciplinary Optimization (HFMDO)

    Alston, Katherine / Doyle, Steven / Winter, Tyler et al. | AIAA | 2010


    HIGH FIDELITY MULTIDISCIPLINARY OPTIMIZATION (HFMDO)

    Alston, K. / Doyle, S. / Kim, H. et al. | British Library Conference Proceedings | 2010


    High Fidelity Multidisciplinary Optimization (HFMDO)

    Alston, K. / Doyle, S. / Winter, T. et al. | British Library Conference Proceedings | 2010


    High Fidelity Multidisciplinary Optimization (HFMDO)

    Alston, Katherine / Doyle, Steven / Kim, Hongman et al. | AIAA | 2010