Hall thrusters exhibit characteristic discharge voltage and current oscillations during steady-state operation. The lower frequency breathing-mode current oscillations are inherent to each thruster and could impact thruster operation and PPU design. The design of the discharge output filter, in particular, the output capacitor is important because it supplies the high peak current oscillations that the thruster demands. However, space-rated, high-voltage capacitors are not readily available and can have significant mass and volume. So, it is important for a PPU designer to know what is the minimum amount of capacitance required to operate a thruster. Through SPICE modeling and electrical measurements on the Hall Effect Rocket with Magnetic Shielding (HERMeS) thruster, it was shown that the harness impedance between the power supply and the thruster is the main contributor towards generating voltage ripple at the thruster. Also, increasing the size of the discharge filter capacitor, as previously implemented during thruster tests, does not reduce the voltage oscillations. The electrical characteristics of the electrical harness between the discharge supply and the thruster is crucial to system performance and could have a negative impact on performance, life and operation.
The Impact of Harness Impedance on Hall Thruster Discharge Oscillations
International Electric Propulsion Conference ; 2017 ; Atlanta, GA, United States
2017-12-01
Report
No indication
English
Effect of Discharge Oscillations on Hall Thruster Performance
British Library Conference Proceedings | 2002
|Evaluation and Active Control of Clustered Hall Thruster Discharge Oscillations
British Library Conference Proceedings | 2005
|