Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from the ground control. The propellant optimal control problem in this work is to determine the optimal finite thrust vector to land the spacecraft at a specified location, in the presence of a highly nonlinear gravity field, subject to various mission and operational constraints. The proposed solution uses convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process for a fixed final time problem. In addition, a second optimization method is wrapped around the convex optimization problem to determine the optimal flight time that yields the lowest propellant usage over all flight times. Gravity models designed for irregularly shaped asteroids are investigated. Success of the algorithm is demonstrated by designing powered descent trajectories for the elongated binary asteroid Castalia.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids


    Contributors:
    Pinson, Robin M. (author) / Lu, Ping (author)

    Conference:

    AIAA SPACE 2016 ; 2016 ; Long Beach, CA, United States


    Publication date :

    2016-09-13


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English


    Keywords :