This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit, followed by an additional year at simulated Mars surface conditions. The actual Mars surface environment is based on the igloo design, actively maintains the propellant at or above -40 degC, 95% carbon dioxide at Mars surface pressure. The NASA Marshall Space Flight Center (MSFC) Mars environment test facility is shown in figure 1 and located in the East Test area of Redstone Arsenal due to storage of live propellants. The facility consists of a vacuum chamber placed inside a large freezer unit. The facility includes pressure and temperature monitoring equipment in addition to a vacuum quality monitoring system spectrometer to record any outgassing products.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Mars Ascent Vehicle-Propellant Aging


    Contributors:


    Publication date :

    2015-01-01


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English