The SmallSat has an unrealized potential in both the private industry and in the federal government. Currently over 70 companies, 50 universities and 17 governmental agencies are involved in SmallSat research and development. In 1994, the U.S. Army Missile and Defense mapped the moon using smallSat imagery. Since then Smart Phones have introduced this imagery to the people of the world as diverse industries watched this trend. The deployment cost of smallSats is also greatly reduced compared to traditional satellites due to the fact that multiple units can be deployed in a single mission. Imaging payloads have become more sophisticated, smaller and lighter. In addition, the growth of small technology obtained from private industries has led to the more widespread use of smallSats. This includes greater revisit rates in imagery, significantly lower costs, the ability to update technology more frequently and the ability to decrease vulnerability of enemy attacks. The popularity of smallSats show a changing mentality in this fast paced world of tomorrow. What impact has this created on the NASA communication networks now and in future years? In this project, we are developing the SmallSat Relational Database which can support a simulation of smallSats within the NASA SCaN Compatability Environment for Networks and Integrated Communications (SCENIC) Modeling and Simulation Lab. The NASA Space Communications and Networks (SCaN) Program can use this modeling to project required network support needs in the next 10 to 15 years. The SmallSat Rational Database could model smallSats just as the other SCaN databases model the more traditional larger satellites, with a few exceptions. One being that the smallSat Database is designed to be built-to-order. The SmallSat database holds various hardware configurations that can be used to model a smallSat. It will require significant effort to develop as the research material can only be populated by hand to obtain the unique data required. When completed it will interface with the SCENIC environment to allow modeling of smallSats. The SmallSat Relational Database can also be integrated with the SCENIC Simulation modeling system that is currently in development. The SmallSat Relational Database simulation will be of great significance in assisting the NASA SCaN group to understand the impact the smallSats have made which have populated the lower orbit around our mother earth. What I have created and worked on this summer session 2015, is the basis for a tool that will be of value to the NASA SCaN SCENIC Simulation Environment for years to come.
SmallSat Database
Emerging Researchers National Conference in STEM ; 2016 ; Washington, DC, United States
2015-06-28
Miscellaneous
No indication
English
NTRS | 2017
|British Library Conference Proceedings | 1993
|