The conceptual design of a submarine for Saturn's moon Titan was a funded NASA Innovative Advanced Concepts (NIAC) Phase 1 for 2014. The proposal stated the desire to investigate what science a submarine for Titan's liquid hydrocarbon seas might accomplish and what that submarine might look like. Focusing on a flagship class science system (100 kg), it was found that a submersible platform can accomplish extensive science both above and below the surface of the Kraken Mare. Submerged science includes mapping using side-looking sonar, imaging and spectroscopy of the lake, as well as sampling of the lake's bottom and shallow shoreline. While surfaced, the submarine will not only sense weather conditions (including the interaction between the liquid and atmosphere) but also image the shoreline, as much as 2 km inland. This imaging requirement pushed the landing date to Titan's next summer period (2047) to allow for lighted conditions, as well as direct-to-Earth communication, avoiding the need for a separate relay orbiter spacecraft. Submerged and surfaced investigation are key to understanding both the hydrological cycle of Titan as well as gather hints to how life may have begun on Earth using liquid, sediment, and chemical interactions. An estimated 25 Mb of data per day would be generated by the various science packages. Most of the science packages (electronics at least) can be safely kept inside the submarine pressure vessel and warmed by the isotope power system.The baseline 90-day mission would be to sail submerged and surfaced around and through Kraken Mare investigating the shoreline and inlets to evaluate the sedimentary interaction both on the surface and then below. Depths of Kraken have yet to be sensed (Ligeia to the north is thought to be 200 m (656 ft) deep), but a maximum depth of 1,000 m (3,281 ft) for Kraken Mare was assumed for the design). The sub would spend 20 d at the interface between Kraken Mare and Ligeia Mare for clues to the drainage of liquid methane into the currently predicted predominantly ethane Kraken Mare. During an extended ninety-day mission, it would transit the throat of Kraken (now Seldon Fretum) and perform similar explorations in other areas of Kraken Mare. Once this half year of exploration is completed the submarine could be tasked to revisit points of interest and perhaps do a complete sonar mapping of the seas. All in all, the submarine could explore over 3,000 km (1,864 mi) in its primary mission at an average speed of 0.3 meters per second.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Phase 1 Final Report: Titan Submarine


    Contributors:

    Publication date :

    2015-07-01


    Type of media :

    Report


    Type of material :

    No indication


    Language :

    English







    Titan Submarine: Exploring The Depths of Kraken Mare

    Oleson, Steven R. / Lorenz, Ralph D. / Paul, Michael V. | NTRS | 2015


    In-situ Nitrogen Harvesting for the Titan Submarine

    Meyerhofer, Peter / Hartwig, Jason W. | AIAA | 2017