This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics


    Contributors:

    Conference:

    GVSETS Symposium ; 2013 ; Troy, MI, United States


    Publication date :

    2013-08-20


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English




    Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics

    Cameron, Jonathan / Myint, Steven / Kuo, Calvin et al. | NTRS | 2013




    High-Fidelity, Real-Time Simulation Support for Vehicle Control System Development

    Grierson, W. / Applied Dynamics International Users Society | British Library Conference Proceedings | 1994


    Variable Fidelity Simulation and Replay for Unmanned Autonomous Ground Vehicles

    Crossman, Jacob / Moshkina, Lilia / Spinola, Matt et al. | SAE Technical Papers | 2019