A structural concept called pultruded rod stitched efficient unitized structure (PRSEUS) was developed by the Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body (HWB) aircraft configuration. While PRSEUS was an enabling technology for the pressurized HWB structure, limited investigation of PRSEUS for other aircraft structures, such as circular fuselages and wings, has been done. Therefore, a study was undertaken to investigate the potential weight savings afforded by using the PRSEUS concept for a commercial transport wing. The study applied PRSEUS to the Advanced Subsonic Technology (AST) Program composite semi-span test article, which was sized using three load cases. The initial PRSEUS design was developed by matching cross-sectional stiffnesses for each stringer/skin combination within the wing covers, then the design was modified to ensure that the PRSEUS design satisfied the design criteria. It was found that the PRSEUS wing design exhibited weight savings over the blade-stiffened composite AST Program wing of nearly 9%, and a weight savings of 49% and 29% for the lower and upper covers, respectively, compared to an equivalent metallic wing.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Preliminary Weight Savings Estimate for a Commercial Transport Wing Using Rod-Stiffened Stitched Composite Technology


    Contributors:

    Conference:

    AIAA 2015 Science and Technology Forum and Exposition (SciTech) ; 2015 ; Kissimmee, FL, United States


    Publication date :

    2015-01-05


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English