The "National Aeronautics Research and Development Policy" document, issued by the National Science and Technology Council in December 2006, stated that one (among several) of the guiding objectives of the federal aeronautics research and development endeavors shall be stable and long-term foundational research efforts. Nearly concurrently, the National Academies issued a more technically focused aeronautics blueprint, entitled: the "Decadal Survey of Civil Aeronautics - Foundations for the Future." Taken together these documents outline the principles of an aeronautics maturation plan. Thus, in response to these overarching inputs (and others), the National Aeronautics and Space Administration (NASA) organized the Fundamental Aeronautics Program (FAP), a program within the NASA Aeronautics Research Mission Directorate (ARMD). The FAP initiated foundational research and technology development tasks to enable the capability of future vehicles that operate across a broad range of Mach numbers, inclusive of the subsonic, supersonic, and hypersonic flight regimes. The FAP Hypersonics Project concentrates on two hypersonic missions: (1) Air-breathing Access to Space (AAS) and (2) the (Planetary Atmospheric) Entry, Decent, and Landing (EDL). The AAS mission focuses on Two-Stage-To-Orbit (TSTO) systems using air-breathing combined-cycle-engine propulsion; whereas, the EDL mission focuses on the challenges associated with delivering large payloads to (and from) Mars. So, the FAP Hypersonic Project investments are aligned to achieve mastery and intellectual stewardship of the core competencies in the hypersonic-flight regime, which ultimately will be required for practical systems with highly integrated aerodynamic/vehicle and propulsion/engine technologies. Within the FAP Hypersonics, the technology management is further divided into disciplines including one targeting Turbine-Based Combine-Cycle (TBCC) propulsion. Additionally, to obtain expertise and support from outside (including industry and academia) the hypersonic uses both NASA Research Announcements (NRAs) and a jointly sponsored, Air Force Office of Scientific Research and NASA, National Hypersonic Science Center that are focused on propulsion research. Finally, these two disciplines use selected external partnership agreements with both governmental agencies and industrial entities. The TBCC discipline is comprised of analytic and experimental tasks, and is structured into the following two research topic areas: (1) TBCC Integrated Flowpath Technologies, and (2) TBCC Component Technologies. These tasks will provide experimental data to support design and analysis tool development and validation that will enable advances in TBCC technology.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    TBCC Discipline Overview. Hypersonics Project


    Contributors:

    Conference:

    2011 Technical Conference ; 2011 ; Cleveland, OH, United States


    Publication date :

    2011-03-15


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English





    MDAO Discipline Overview: Hypersonics Project

    Jeffrey S Robinson | NTRS | 2011


    Fundamental Aeronautics Hypersonics Project: Overview

    Mansour, Nagi / Pittman, James / Olson, Lawrence | AIAA | 2007


    Fundamental Aeronautics Hypersonics Project: Overview

    Mansour, N. / Pittman, J. / Olson, L. et al. | British Library Conference Proceedings | 2007