The COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) team designed a robotic lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost in this 2006 design study. The purpose of the low cost lunar lander design was to investigate how much payload can an inexpensive chemical or Electric Propulsion (EP) system deliver to the Moon s surface. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10% of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.
COMPASS Final Report: Low Cost Robotic Lunar Lander
2010-12-01
Report
No indication
English
COMPASS Final Report: Low Cost Robotic Lunar Lander
NTIS | 2010
|COMPASS Final Report: Lunar Relay Satellite (LRS)
NTRS | 2012
|COMPASS Final Report: Lunar Relay Satellite (LRS)
NTIS | 2012
|Lunar Lander Mass Spectrometer Final Report
NTIS | 1967
|Lunar lander mass spectrometer Final report
NTRS | 1967
|