A method was developed for measuring the atmospheric density of Titan, the largest moon of Saturn, to create an accurate density profile as a function of altitude. This will allow mission planners to select safe flyby altitudes, and for navigation engineers to accurately predict the delta-v associated with those flybys. The spacecraft angular rate vector profile as a function of time is collected via telemetry from the onboard attitude estimator once every 2 seconds. The telemetry for thruster times, as a function of time, for eight Reaction Control System (RCS) thrusters is gathered, once a second, from the Propulsion Manager algorithm of the Cassini onboard attitude-control flight software. Using these data, the ground software computes the angular momentum vector profile and the per-axis external torque as a function of time imparted from the spacecraft only due to the atmospheric drag. The software can then determine the Titan atmospheric density profile as a function of time and altitude with the known values of spacecraft center of mass, the Titan-relative range and velocity data, the projected area, and the aerocenter, along with the estimated drag coefficient in a free molecular flow field.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Determining Atmospheric-Density Profile of Titan


    Contributors:


    Publication date :

    2010-09-01


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English