In 2009, NASA's Fundamental Space Biology program provided an opportunity for investigators to propose for a quick-turn-around multi-user spaceflight experiment that focused on the model plant species Arabidopsis thaliana. This was a passive payload with no on-orbit power or communications available. An NRA was rapidly written (8/09), released (NNH09ZTT004N; 9/09), proposals were received (11/09) and peer reviewed with 3 PI groups selected for flight (1/10): (1) A-L Paul, University of Florida, (2) E. Blancaflor, Noble Foundation, (3) J. Kiss, Miami University. The investigators flew Arabidopsis seeds or callus cultures of their choosing (plated onto 60 mm diameter Petri dishes containing agarsolidified media) on the STS-131 Space Shuttle mission (launched 4/5/10) and the resulting plant tissues returned to earth on 4/20/10. Each petri dish was placed inside its own Petri Dish Fixation Unit (PDFU), which was assembled and loaded with either formaldehyde, glutaraldehyde or RNAlater for crew-facilitated on-orbit fixation. Five PDFUs plus a temperature data logger were loaded into each of 8 BRIC-PDFUs (Biological Research In Canisters PDFU). All eight BRIC-PDFUs were loaded into a half tray along with actuator equipment that the crew used for the fixations. Pre-flight turn-over was 28 hours prior to launch. The BRIC-PDFU assemblies were removed from the orbiter and handed over to the investigator teams for processing 5-6 hours after landing. This payload demonstrated a rapid response turnaround for flying multiple peer-reviewed science investigations using previously flown hardware and minimal ISS-resources. The approach used reduced both hardware/certification and PI costs. The time waiting for a flight opportunity for the selected Pls was minimal. This new paradigm for spaceflight experiments may provide a model for future flight research opportunities. The ultimate goal is to fly as many investigators as rapidly as possible and reinvigorate the space biology community while obtaining high-quality, peer-reviewed science.
Rapid Turn Around BRIC-PDFU Payload: A New Paradigm for Spaceflight Experiments
American Society for Gravitation and Space Biology (ASGSB) 26th Annual Meeting ; 2010 ; Washington, DC, United States
2010-01-01
Conference paper
No indication
English
British Library Conference Proceedings | 2000
|Spaceflight Payload Design Flight Experience G-408
NTIS | 1992
|Spaceflight payload design flight experience G-408
NTRS | 1992
|Thermal Design of a Spaceflight Plant Chamber Payload
British Library Conference Proceedings | 2003
|Thermal Design of a Spaceflight Plant Chamber Payload
SAE Technical Papers | 2003
|