The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the event of an IRU failure, the rate data is be derived from the star tracker, but with degraded pointing performance. The Delta-V control mode responsibility is to maintain attitude pointing during the cruise trajectory, insertion burns and lunar orbit maintenance by adjustments made to the spacecraft s velocity magnitude and vector direction. The ACS also provides for a thruster based system momentum management algorithm (known as Delta-H) to maintain the system and wheel momentum to within acceptable levels. In the event an anomaly causes the LRO spacecraft to lose the ability to maintain its current attitude pointing, a Sun Safe mode is included in the ACS for the purpose of providing a known power and thermally safe coarse inertial sun attitude for an indefinite period of time, within the manageable limits of the reaction wheels. The Sun Safe mode is also the initial spacecraft control mode off of the launch vehicle and provides for a means to null tip-off rates immediately after separation. The nominal configuration is to use the IRU for rate information in the controller. In the event of a gyro failure a gyroless control mode was developed that computes rate information from the CSS data.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview


    Contributors:

    Conference:

    American Institute of Aeronautics and Astronautics (AIAA) Guidance, Navigation and Control (GN&C) Conference ; 2010 ; Toronto, Canada


    Publication date :

    2010-01-01


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English








    Lunar Reconnaissance Orbiter: Lessons Learned

    Rivera, Rachel / Lorentson, Charles / Rodriguez, Marcello | NTRS | 2009