This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation under all possible scenarios. Current research has assumed perfect knowledge of the location of other aircraft in the vicinity so absolute guarantees are possible, but increasingly we are relaxing the assumptions to allow incomplete, inaccurate, and/or faulty information from communication sources.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System


    Contributors:


    Publication date :

    2008-04-30


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English




    Overview of NASA Langley's Formal Methods Program

    Butler, R. W. / United States; National Aeronautics and Space Administration | British Library Conference Proceedings | 1995