On February 1, 2003, the Space Shuttle Columbia broke apart during reentry, resulting in loss of the vehicle and its seven crewmembers. For the next several months, an extensive investigation of the accident ensued involving a nationwide team of experts from NASA, industry, and academia, spanning dozens of technical disciplines. The Columbia Accident Investigation Board (CAIB), a group of experts assembled to conduct an investigation independent of NASA, concluded in August, 2003 that the most likely cause of the loss of Columbia and its crew was a breach in the left wing leading edge Reinforced Carbon-Carbon (RCC) thermal protection system initiated by the impact of thermal insulating foam that had separated from the orbiters external fuel tank 81 seconds into the mission's launch. During reentry, this breach allowed superheated air to penetrate behind the leading edge and erode the aluminum structure of left wing, which ultimately led to the breakup of the orbiter. The findings of the CAIB were supported by ballistic impact tests, which simulated the physics of External Tank Foam impact on the RCC wing leading edge material. These tests ranged from fundamental material characterization tests to full-scale Orbiter Wing Leading Edge tests. Following the accident investigation, NASA spent the next 18 months focused on returning the shuttle safely to flight. In order to fully evaluate all potential impact threats from the many debris sources on the Space Shuttle during ascent, NASA instituted a significant impact testing program. The results from these tests led to the validation of high-fidelity computer models, capable of predicting actual or potential Shuttle impact events, were used in the certification of STS-114, NASA s Return to Flight Mission, as safe to fly. This presentation will provide a look into the inner workings of the Space Shuttle and a behind the scenes perspective on the impact analysis and testing done for the Columbia Accident Investigation and NASA's Return to Flight programs. In addition, highlights from recent Shuttle missions are presented.
The Columbia Accident Investigation and The NASA Glenn Ballistic Impact Laboratory Contributions Supporting NASA's Return to Flight
2007-01-01
Conference paper
No indication
English
Numerical Investigation of the NASA Glenn Propulsion Systems Laboratory
British Library Conference Proceedings | 2019
|Numerical Investigation of the NASA Glenn Propulsion Systems Laboratory
SAE Technical Papers | 2019
|IEEE | 2004