During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom a simulated PAL ramp panel. It was found that the smooth rind on the foam facing the cable tray did significantly affect the properties of foam at the PAL ramp surface. The smooth rind increased the storage modulus E' of the foam as much as 20- 40% over a temperature range of -145 to 95 C. Because of foam loss fiom the PAL ramp, future Shuttle flights were grounded indefinitely to allow further testing to better understand foam properties. The decision was also made to remove foam from the LH2 PAL, ramp. Other RTF efforts prior to the launch of Discovery included
Characterization of Space Shuttle Thermal Protection System (TPS) Materials for Return-to-Flight following the Shuttle Columbia Accident Investigation
2006 North American Thermal Analysis Society (NATAS) Conference ; 2006 ; Bowling Green, KY, United States
2006-01-01
Conference paper
No indication
English
Space Shuttle Program Return to Flight
British Library Conference Proceedings | 2004
|