The successful implementation of machine learning in autonomous rover traverse science requires addressing challenges that range from the analytical technical realm, to the fuzzy, philosophical domain of entrenched belief systems within scientists and mission managers.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    Machine learning challenges in Mars rover traverse science


    Contributors:
    Castano, R. (author) / Judd, M. (author) / Anderson, R. C. (author) / Estlin, T. (author)

    Conference:

    2003 ICML Workshop on Machine Learning Technologies for Autonomous Space


    Publication date :

    2003-08-21


    Type of media :

    Conference paper


    Type of material :

    No indication


    Language :

    English




    Traverse Performance Characterization for the Mars Science Laboratory Rover

    Heverly, Matt / Matthews, Jaret / Lin, Justin et al. | Tema Archive | 2013


    Traverse Performance Characterization for the Mars Science Laboratory Rover

    Heverly, M. / Matthews, J. / Lin, J. et al. | British Library Online Contents | 2013


    Rover traverse science - the opportunities and the challenges

    Castano, Rebecca / Anderson, Robert | NTRS | 2002



    Experiments in Onboard Rover Traverse Science

    Castano, Rebecca / Estlin, Tara / Gaines, Dan et al. | IEEE | 2008