An investigation was made of the trim and dynamic response characteristics of the free-floating horizontal tail of a 1/7-scale model of the complete tail of the Grumman XF10F-1 airplane in the Langley 8-foot transonic tunnel at Mach numbers up to 1.13. The complete tail was mounted in the tunnel on a 3deg conical support body. Various configurations were investigated. A loss in damping of the horizontal tail at transonic speeds was shown by both tunnel and flight tests. The loss in damping extended over a greater Mach number range and the maximum loss occurred at a higher Mach number in the tunnel tests. Large-amplitude oscillations of the horizontal tail of the basic configuration which occurred at low supersonic Mach numbers appeared to be primarily due to the vertical tail of the basic configuration and the interference effects associated with this tail. Secondary factors contributing to the development of the large-amplitude oscillations of the horizontal tail of the basic configuration were probably the loss in damping of the horizontal tail at transonic speeds and the turbulence of the airstream itself.


    Access

    Access via TIB

    Check availability in my library


    Export, share and cite



    Title :

    A Transonic Wind-Tunnel Investigation of the Trim and Dynamic Response Characteristics of the Horizontal Tail of a 1/7-Scale Model of the Complete Tail of the Grumman XF10F-1 Airplane


    Contributors:

    Publication date :

    1953-01-01


    Type of media :

    Miscellaneous


    Type of material :

    No indication


    Language :

    English


    Keywords :